Figure 1

1.Stevens, W. H., Inman, M. D., Wattie, J. & O’Byrne, P. M. Allergen-induced oxygen radical launch from bronchoalveolar lavage cells and airway hyperresponsiveness in canines. Am J Respir Crit Care Med
151, 1526–1531, https://doi.org/10.1164/ajrccm.151.5.7735610 (1995).2.Gleich, G. J. Mechanisms of eosinophil-associated irritation. J Allergy Clin Immunol
105, 651–663, https://doi.org/10.1067/mai.2000.105712 (2000).three.Coyle, A. J. & Tsuyuki, S. Th2 cells and cytokine networks in allergic irritation of the lung. Mediators Inflamm
Four, 239–247, https://doi.org/10.1155/S096293519500038X (1995).Four.Liao, Y. R., Hsu, J. Y., Chu, J. J. & Fu, L. S. Caffeic acid phenethyl ester suppresses the induction of eotaxin in human lung fibroblast cells. J Bronchial asthma
47, 233–237, https://doi.org/10.3109/02770900903556405 (2010).5.Monteseirin, J. et al. Neutrophils as a novel supply of eosinophil cationic protein in IgE-mediated processes. J Immunol
179, 2634–2641 (2007).6.Carr, T. F., Berdnikovs, S., Simon, H. U., Bochner, B. S. & Rosenwasser, L. J. Eosinophilic bioactivities in extreme bronchial asthma. World Allergy Organ J
9, 21, https://doi.org/10.1186/s40413-Zero16-0112-5 (2016).7.Fan, T. C., Chang, H. T., Chen, I. W., Wang, H. Y. & Chang, M. D. A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein. Site visitors
eight, 1778–1795, https://doi.org/10.1111/j.1600-0854.2007.00650.x (2007).eight.Fang, S. L. et al. A novel cell-penetrating peptide derived from human eosinophil cationic protein. PLoS One
eight, e57318, https://doi.org/10.1371/journal.pone.0057318 (2013).9.Chang, Okay. C. et al. TNF-alpha mediates eosinophil cationic protein-induced apoptosis in BEAS-2B cells. BMC Cell Biol
11, 6, https://doi.org/10.1186/1471-2121-11-6 (2010).10.Fan, T. C. et al. Characterization of molecular interactions between eosinophil cationic protein and heparin. J Biol Chem
283, 25468–25474, https://doi.org/10.1074/jbc.M803516200 (2008).11.Chen, H. C. et al. Molecular imaging of heparan sulfate expression with radiolabeled recombinant eosinophil cationic protein predicts allergic lung irritation in a mouse mannequin for bronchial asthma. J Nucl Med
54, 793–800, https://doi.org/10.2967/jnumed.112.111393 (2013).12.Mythreye, Okay. & Blobe, G. C. Proteoglycan signaling co-receptors: roles in cell adhesion, migration and invasion. Cell Sign
21, 1548–1558, https://doi.org/10.1016/j.cellsig.2009.05.001 (2009).13.den Dekker, E. et al. Monocyte cell floor glycosaminoglycans positively modulate IL-Four-induced differentiation towards dendritic cells. J Immunol
180, 3680–3688 (2008).14.Lipscombe, R. J., Nakhoul, A. M., Sanderson, C. J. & Coombe, D. R. Interleukin-5 binds to heparin/heparan sulfate. A mannequin for an interplay with extracellular matrix. J Leukoc Biol
63, 342–350 (1998).15.Zhang, X., Wu, C., Tune, J., Gotte, M. & Sorokin, L. Syndecan-1, a cell floor proteoglycan, negatively regulates preliminary leukocyte recruitment to the mind throughout the choroid plexus in murine experimental autoimmune encephalomyelitis. J Immunol
191, 4551–4561, doi: https://doi.org/10.4049/jimmunol, 1300931 (2013).16.Mummery, R. S. & Rider, C. C. Characterization of the heparin-binding properties of IL-6. J Immunol
165, 5671–5679 (2000).17.Coombe, D. R. Organic implications of glycosaminoglycan interactions with haemopoietic cytokines. Immunol Cell Biol
86, 598–607, https://doi.org/10.1038/icb.2008.49 (2008).18.Hung, L. C. et al. Heparin-Promoted Mobile Uptake of the Cell-Penetrating Glycosaminoglycan Binding Peptide, GBPECP, Depends upon a Single Tryptophan. ACS Chem Biol
12, 398–406, https://doi.org/10.1021/acschembio.6b00864 (2017).19.Ford, J. G. et al. Il-13 and IFN-gamma: interactions in lung irritation. J Immunol
167, 1769–1777 (2001).20.Padrid, P. et al. Persistent airway hyperresponsiveness and histologic alterations after continual antigen problem in cats. Am J Respir Crit Care Med
151, 184–193, https://doi.org/10.1164/ajrccm.151.1.7812551 (1995).21.Chong, B. T., Agrawal, D. Okay., Romero, F. A. & Townley, R. G. Measurement of bronchoconstriction utilizing whole-body plethysmograph: comparability of freely shifting versus restrained guinea pigs. J Pharmacol Toxicol Strategies
39, 163–168 (1998).22.Lien, P. C. et al. In silico prediction and in vitro characterization of multifunctional human RNase3. Biomed Res Int
2013, 170398, https://doi.org/10.1155/2013/170398 (2013).23.Chen, C. J. et al. A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Focusing on and Migration Inhibition. Biomed Res Int
2015, 237969, https://doi.org/10.1155/2015/237969 (2015).24.Billings, P. C. & Pacifici, M. Interactions of signaling proteins, development elements and different proteins with heparan sulfate: mechanisms and mysteries. Join Tissue Res
56, 272–280, https://doi.org/10.3109/03008207.2015.1045066 (2015).25.Mulloy, B. & Forster, M. J. Software of drug discovery software program to the identification of heparin-binding websites on protein surfaces: a computational survey of the Four-helix cytokines. Mol Simulat
34, 481–489, https://doi.org/10.1080/08927020701784754 (2008).26.Lortat-Jacob, H., Garrone, P., Banchereau, J. & Grimaud, J. A. Human interleukin Four is a glycosaminoglycan-binding protein. Cytokine
9, 101–105, https://doi.org/10.1006/cyto.1996.0142 (1997).27.Jones, C. A., Williams, Okay. A., Finlay-Jones, J. J. & Hart, P. H. Interleukin Four manufacturing by human amnion epithelial cells and regulation of its exercise by glycosaminoglycan binding. Biol Reprod
52, 839–847 (1995).28.Matsukura, S. et al. Activation of eotaxin gene transcription by NF-kappa B and STAT6 in human airway epithelial cells. J Immunol
163, 6876–6883 (1999).29.Hoeck, J. & Woisetschlager, M. STAT6 mediates eotaxin-1 expression in IL-Four or TNF-alpha-induced fibroblasts. J Immunol
166, 4507–4515 (2001).30.Shamri, R. et al. CCL11 elicits secretion of RNases from mouse eosinophils and their cell-free granules. FASEB J
26, 2084–2093, https://doi.org/10.1096/fj.11-200246 (2012).31.Yao, X. et al. 5A, an apolipoprotein A-I mimetic peptide, attenuates the induction of home mud mite-induced bronchial asthma. J Immunol
186, 576–583, https://doi.org/10.4049/jimmunol.1001534 (2011).32.Kim, D. Y. et al. Anti-inflammatory results of the R2 peptide, an inhibitor of transglutaminase 2, in a mouse mannequin of allergic bronchial asthma, induced by ovalbumin. Br J Pharmacol
162, 210–225, https://doi.org/10.1111/j.1476-5381.2010.01033.x (2011).33.Wang, Y., Li, Y., Shan, J., Fixman, E. & McCusker, C. Efficient therapy of experimental ragweed-induced bronchial asthma with STAT-6-IP, a topically delivered cell-penetrating peptide. Clin Exp Allergy
41, 1622–1630, https://doi.org/10.1111/j.1365-2222.2011.03853.x (2011).34.Hoffmann, F. et al. Origin, Localization, and Immunoregulatory Properties of Pulmonary Phagocytes in Allergic Bronchial asthma. Entrance Immunol
7, 107, https://doi.org/10.3389/fimmu.2016.00107 (2016).35.Yu, S. J., Liao, E. C., Sheu, M. L., Margaret Chang, D. T. & Tsai, J. J. Correction: Cell-Penetrating Peptide Derived from Human Eosinophil Cationic Protein Inhibits Mite Allergen Der p 2 Induced Inflammasome Activation. PLoS One
10, e0127255, https://doi.org/10.1371/journal.pone.0127255 (2015).36.Besnard, A. G. et al. NLRP3 inflammasome is required in murine bronchial asthma within the absence of aluminum adjuvant. Allergy
66, 1047–1057, https://doi.org/10.1111/j.1398-9995.2011.02586.x (2011).37.Besnard, A. G. et al. Inflammasome-IL-1-Th17 response in allergic lung irritation. J Mol Cell Biol
Four, three–10, https://doi.org/10.1093/jmcb/mjr042 (2012).38.Sarrazin, S., Lamanna, W. C. & Esko, J. D. Heparan sulfate proteoglycans. Chilly Spring Harb Perspect Biol
three, doi:https://doi.org/10.1101/cshperspect.a004952 (2011).39.Tanaka, Y., Kimata, Okay., Adams, D. H. & Eto, S. Modulation of cytokine operate by heparan sulfate proteoglycans: subtle fashions for the regulation of mobile responses to cytokines. Proc Assoc Am Physicians
110, 118–125 (1998).40.Parish, C. R. The function of heparan sulphate in irritation. Nat Rev Immunol
6, 633–643, https://doi.org/10.1038/nri1918 (2006).41.Celie, J. W., Beelen, R. H. & van den Born, J. Heparan sulfate proteoglycans in extravasation: helping leukocyte steerage. Entrance Biosci (Landmark Ed)
14, 4932–4949 (2009).42.Westergren-Thorsson, G., Chakir, J., Lafreniere-Allard, M. J., Boulet, L. P. & Tremblay, G. M. Correlation between airway responsiveness and proteoglycan manufacturing by bronchial fibroblasts from regular and asthmatic topics. Int J Biochem Cell Biol
34, 1256–1267 (2002).43.Zuberi, R. I. et al. Deficiency of endothelial heparan sulfates attenuates allergic airway irritation. J Immunol
183, 3971–3979, https://doi.org/10.4049/jimmunol.0901604 (2009).44.Fu, L. S. et al. Heparin protects BALB/c mice from mite-induced airway allergic irritation. Int J Immunopathol Pharmacol
26, 349–359, https://doi.org/10.1177/039463201302600208 (2013).45.Huang, J. N. et al. Low-molecular-weight heparin and unfractionated heparin lower Th-1, 2, and 17 expressions. PLoS One
9, e109996, https://doi.org/10.1371/journal.pone.Zero109996 (2014).46.Ahmed, T., Garrigo, J. & Danta, I. Stopping bronchoconstriction in exercise-induced bronchial asthma with inhaled heparin. N Engl J Med
329, 90–95, https://doi.org/10.1056/NEJM199307083290204 (1993).47.Casu, B., Naggi, A. & Torri, G. Heparin-derived heparan sulfate mimics to modulate heparan sulfate-protein interplay in irritation and most cancers. Matrix Biol
29, 442–452, https://doi.org/10.1016/j.matbio.2010.04.003 (2010).48.Hung, T. J. et al. Practical characterization of ECP-heparin interplay: a novel molecular mannequin. PLoS One
eight, e82585, https://doi.org/10.1371/journal.pone.0082585 (2013).

LEAVE A REPLY

Please enter your comment!
Please enter your name here