1.Veit, G. et al. From CFTR biology towards combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol. Biol. Cell 27, 424–433 (2016).2.Sosnay, P. R. et al. Defining the illness legal responsibility of variants within the cystic fibrosis transmembrane conductance regulator gene. Nat. Genet. 45, 1160–1167 (2013).three.Slicing, G. R. Cystic fibrosis genetics: from molecular understanding to scientific utility. Nat. Rev. Genet. 16, 45–56 (2015).four.Liu, F., Zhang, Z., Csanady, L., Gadsby, D. C. & Chen, J. Molecular construction of the human CFTR ion channel. Cell 169, 85–95 e88 (2017).5.Hunt, J. F., Wang, C. & Ford, R. C. Cystic fibrosis transmembrane conductance regulator (ABCC7)construction. Chilly Spring Harb. Perspect. Med. three, a009514 (2013).6.Hwang, T. C. & Kirk, Ok. L. The CFTR ion channel: gating, regulation, and anion permeation. Chilly Spring Harb. Perspect. Med. three, a009498 (2013).7.Chong, P. A., Kota, P., Dokholyan, N. V. & Forman-Kay, J. D. Dynamics intrinsic to cystic fibrosis transmembrane conductance regulator operate and stability. Chilly Spring Harb. Perspect. Med. three, a009522 (2013).eight.Okiyoneda, T., Apaja, P. M. & Lukacs, G. L. Protein high quality management on the plasma membrane. Curr. Opin. Cell Biol. 23, 483–491 (2011).9.Rabeh, W. M. et al. Correction of each NBD1 energetics and area interface is required to revive ΔF508 CFTR folding and performance. Cell 148, 150–163 (2012).10.Mendoza, J. L. et al. Necessities for environment friendly correction of ΔF508 CFTR revealed by analyses of developed sequences. Cell 148, 164–174 (2012).11.Farinha, C. M. et al. Revertants, low temperature, and correctors reveal the mechanism of F508del-CFTR rescue by VX-809 and recommend a number of brokers for full correction. Chem. Biol. 20, 943–955 (2013).12.He, L. et al. Restoration of NBD1 thermal stability is important and adequate to appropriate ∆F508 CFTR folding and meeting. J. Mol. Biol. 427, 106–120 (2015).13.Corridor, J. D. et al. Binding display screen for cystic fibrosis transmembrane conductance regulator correctors finds new chemical matter and yields insights into cystic fibrosis therapeutic technique. Protein Sci. 25, 360–373 (2016).14.Cui, L. et al. Area interdependence within the biosynthetic meeting of CFTR. J. Mol. Biol. 365, 981–994 (2007).15.Du, Ok. & Lukacs, G. L. Cooperative meeting and misfolding of CFTR domains in vivo. Mol. Biol. Cell 20, 1903–1915 (2009).16.Du, Ok., Sharma, M. & Lukacs, G. L. The ΔF508 cystic fibrosis mutation impairs area–area interactions and arrests post-translational folding of CFTR. Nat. Struct. Mol. Biol. 12, 17–25 (2005).17.Okiyoneda, T. et al. Mechanism-based corrector mixture restores ΔF508-CFTR folding and performance. Nat. Chem. Biol. 9, 444–454 (2013).18.Vernon, R. M. et al. Stabilization of a nucleotide-binding area of the cystic fibrosis transmembrane conductance regulator yields perception into disease-causing mutations. J. Biol. Chem. 292, 14147–14164 (2017).19.Phuan, P. W. et al. Synergy-based small-molecule display screen utilizing a human lung epithelial cell line yields ΔF508-CFTR correctors that increase VX-809 maximal efficacy. Mol. Pharmacol. 86, 42–51 (2014).20.Lopes-Pacheco, M. et al. Mixture of correctors rescue ΔF508-CFTR by decreasing its affiliation with Hsp40 and Hsp27. J. Biol. Chem. 290, 25636–25645 (2015).21.Wang, Y., Lavatory, T. W., Bartlett, M. C. & Clarke, D. M. Additive impact of a number of pharmacological chaperones on maturation of CFTR processing mutants. Biochem. J. 406, 257–263 (2007).22.Taylor-Cousar, J. L. et al. Tezacaftor–ivacaftor in sufferers with cystic fibrosis homozygous for Phe508del. N. Engl. J. Med. 377, 2013–2023 (2017).23.Van Goor, F. et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc. Natl. Acad. Sci. USA 108, 18843–18848 (2011).24.Ren, H. Y. et al. VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein by motion on membrane-spanning area 1. Mol. Biol. Cell 24, 3016–3024 (2013).25.Wainwright, C. E. et al. Lumacaftor–ivacaftor in sufferers with cystic fibrosis homozygous for Phe508del CFTR. N. Engl. J. Med. 373, 220–231 (2015).26.Veit, G. et al. Some gating potentiators, together with VX-770, diminish ΔF508-CFTR purposeful expression. Sci. Transl. Med. 6, 246ra97 (2014).27.Cholon, D. M. et al. Potentiator ivacaftor abrogates pharmacological correction of ΔF508 CFTR in cystic fibrosis. Sci. Transl. Med. 6, 246ra96 (2014).28.Ehrhardt, C. et al. In direction of an in vitro mannequin of cystic fibrosis small airway epithelium: characterisation of the human bronchial epithelial cell line CFBE41o-. Cell Tissue Res. 323, 405–415 (2006).29.Thibodeau, P. H. et al. The cystic fibrosis–inflicting mutation ΔF508 impacts a number of steps in cystic fibrosis transmembrane conductance regulator biogenesis. J. Biol. Chem. 285, 35825–35835 (2010).30.Pedemonte, N. et al. Small-molecule correctors of faulty ΔF508-CFTR mobile processing recognized by high-throughput screening. J. Clin. Make investments. 115, 2564–2571 (2005).31.Pissarra, L. S. et al. Solubilizing mutations used to crystallize one CFTR area attenuate the trafficking and channel defects attributable to the foremost cystic fibrosis mutation. Chem. Biol. 15, 62–69 (2008).32.Apaja, P. M., Xu, H. & Lukacs, G. L. High quality management for unfolded proteins on the plasma membrane. J. Cell Biol. 191, 553–570 (2010).33.Duarri, A. et al. Molecular pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts: mutations in MLC1 trigger folding defects. Hum. Mol. Genet. 17, 3728–3739 (2008).34.Takahashi, Ok. et al. V2 vasopressin receptor (V2R) mutations in partial nephrogenic diabetes insipidus spotlight protean agonism of V2R antagonists. J. Biol. Chem. 287, 2099–2106 (2012).35.Apaja, P. M. et al. Ubiquitination-dependent high quality management of hERG Ok+channel with acquired and inherited conformational defect on the plasma membrane. Mol. Biol. Cell 24, 3787–3804 (2013).36.Zhang, F., Kartner, N. & Lukacs, G. L. Restricted proteolysis as a probe for arrested conformational maturation of ΔF508 CFTR. Nat. Struct. Biol. 5, 180–183 (1998).37.Hegedus, T. et al. F508del CFTR with two altered RXR motifs escapes from ER high quality management however its channel exercise is thermally delicate. Biochim. Biophys. Acta 1758, 565–572 (2006).38.Bagdany, M. et al. Chaperones rescue the energetic panorama of mutant CFTR at single molecule and in cell. Nat. Commun. eight, 398 (2017).39.Veit, G. et al. Ribosomal stalk protein silencing partially corrects the ΔF508-CFTR purposeful expression defect. PLoS Biol. 14, e1002462 (2016).40.Pranke, I. M. et al. Correction of CFTR operate in nasal epithelial cells from cystic fibrosis sufferers predicts enchancment of respiratory operate by CFTR modulators. Sci. Rep. 7, 7375 (2017).41.Liu, X. et al. Conditional reprogramming and long-term growth of regular and tumor cells from human biospecimens. Nat. Protoc. 12, 439–451 (2017).42.Müller, L., Brighton, L. E., Carson, J. L., Fischer, W. A. II & Jaspers, I. Culturing of human nasal epithelial cells on the air liquid interface. J. Vis. Exp. 80, 50646 (2013).43.Avramescu, R. G. et al. Mutation-specific downregulation of CFTR2 variants by gating potentiators. Hum. Mol. Genet. 26, 4873–4885 (2017).44.Ostedgaard, L. S. et al. Processing and performance of CFTR-ΔF508 are species-dependent. Proc. Natl. Acad. Sci. USA 104, 15370–15375 (2007).45.French, P. J. et al. A ΔF508 mutation in mouse cystic fibrosis transmembrane conductance regulator leads to a temperature-sensitive processing defect in vivo. J. Clin. Make investments. 98, 1304–1312 (1996).46.da Cunha, M. F. et al. Evaluation of nasal potential in murine cystic fibrosis fashions. Int. J. Biochem. Cell Biol. 80, 87–97 (2016).47.Van Goor, F., Yu, H., Burton, B. & Hoffman, B. J. Impact of ivacaftor on CFTR varieties with missense mutations related to defects in protein processing or operate. J. Cyst. Fibros. 13, 29–36 (2014).48.Robert, R. et al. Correction of the Δ phe508 cystic fibrosis transmembrane conductance regulator trafficking defect by the bioavailable compound glafenine. Mol. Pharmacol. 77, 922–930 (2010).49.Coffman, Ok. C. et al. Constrained bithiazoles: small molecule correctors of faulty ΔF508-CFTR protein trafficking. J. Med. Chem. 57, 6729–6738 (2014).50.Rowe, S. M. & Verkman, A. S. Cystic fibrosis transmembrane regulator correctors and potentiators. Chilly Spring Harb. Perspect. Med. three, a009761 (2013).51.Li, C. & Naren, A. P. CFTR chloride channel within the apical compartments: spatiotemporal coupling to its interacting companions. Integr. Biol. (Camb) 2, 161–177 (2010).52.Monterisi, S. et al. CFTR regulation in human airway epithelial cells requires integrity of the actin cytoskeleton and compartmentalized cAMP and PKA exercise. J. Cell Sci. 125, 1106–1117 (2012).53.Pankow, S. et al. F508 CFTR interactome remodelling promotes rescue of cystic fibrosis. Nature 528, 510–516 (2015).54.Trzcińska-Daneluti, A. M. et al. RNA interference display screen to determine kinases that suppress rescue of ΔF508-CFTR. Mol. Cell. Proteomics 14, 1569–1583 (2015).55.Okiyoneda, T. et al. Peripheral protein high quality management removes unfolded CFTR from the plasma membrane. Science 329, 805–810 (2010).56.Tosco, A. et al. A novel remedy of cystic fibrosis performing on-target: cysteamine plus epigallocatechin gallate for the autophagy-dependent rescue of sophistication II-mutated CFTR. Cell Demise Differ. 23, 1380–1393 (2016).57.Roth, D. M. et al. Modulation of the maladaptive stress response to handle ailments of protein folding. PLoS Biol. 12, e1001998 (2014).58.Hegde, R. N. et al. Unravelling druggable signalling networks that management F508del-CFTR proteostasis. eLife four, e10365 (2015).59.Calamini, B. et al. Small-molecule proteostasis regulators for protein conformational ailments. Nat. Chem. Biol. eight, 185–196 (2011).60.Griesenbach, U., Geddes, D. M. & Alton, E. W. The pathogenic penalties of a single mutated CFTR gene. Thorax 54 (Suppl 2), S19–S23 (1999).61.Veit, G. et al. Proinflammatory cytokine secretion is suppressed by TMEM16A or CFTR channel exercise in human cystic fibrosis bronchial epithelia. Mol. Biol. Cell 23, 4188–4202 (2012).62.Liu, X. et al. ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am. J. Pathol. 180, 599–607 (2012).63.Neuberger, T., Burton, B., Clark, H. & Van Goor, F. Use of major cultures of human bronchial epithelial cells remoted from cystic fibrosis sufferers for the pre-clinical testing of CFTR modulators. Strategies Mol. Biol. 741, 39–54 (2011).64.van Doorninck, J. H. et al. A mouse mannequin for the cystic fibrosis delta F508 mutation. EMBO J. 14, 4403–4411 (1995).65.Namkung, W., Thiagarajah, J. R., Phuan, P. W. & Verkman, A. S. Inhibition of Ca2+-activated Cl– channels by gallotannins as a doable molecular foundation for well being advantages of pink wine and inexperienced tea. FASEB J. 24, 4178–4186 (2010).66.Myszka, D. G. Enhancing biosensor evaluation. J. Mol. Recognit. 12, 279–284 (1999).67.Aleksandrov, A. A. & Riordan, J. R. Regulation of CFTR ion channel gating by MgATP. FEBS Lett. 431, 97–101 (1998).68.Saussereau, E. L. et al. Characterization of nasal potential distinction in cftr knockout and F508del-CFTR mice. PLoS One eight, e57317 (2013).


Please enter your comment!
Please enter your name here