Assessment of <i>in vivo</i> versus <i>in vitro</i> biofilm formation of clinical methicillin-resistant <i>Staphylococcus aureus</i> isolates from endotracheal tubes

1.Esperatti, M. et al. Nosocomial Pneumonia within the Intensive Care Unit Acquired throughout Mechanical Air flow or Not. Am. J. Respir. Crit Care Med. 182, 1533–1539 (2010).2.Perkins, S. D., Woeltje, Ok. F. & Angenent, L. T. Endotracheal tube biofilm inoculation of oral flora and subsequent colonization of opportunistic pathogens. Int. J. Med. Microbiol. 300, 503–511 (2010).three.Fernandez-Barat, L. & Torres, A. Biofilms in ventilator-associated pneumonia. Future. Microbiol. 11, 1599–1610 (2016).four.Fernandez-Barat, L. et al. Direct evaluation of bacterial viability in endotracheal tube biofilm from a pig mannequin of methicillin-resistant Staphylococcus aureus pneumonia following antimicrobial remedy. FEMS Immunol. Med. Microbiol. 65, 309–317 (2012).5.Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a standard explanation for persistent infections. Science 21, 1318–1322 (1999).6.Li, B. G. et al. Endotracheal tube biofilm translocation within the lateral Trendelenburg place. Crit Care 19, 59 (2015).7.Gil-Perotin, S. et al. Implications of endotracheal tube biofilm in ventilator-associated pneumonia response: a state of idea. Crit Care 16, R93 (2012).eight.Adair, C. G. et al. Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med 25, 1072–1076 (1999).9.Feldman, C. et al. The presence and sequence of endotracheal tube colonization in sufferers present process mechanical air flow. Eur Respir J 13, 546–551 (1999).10.Inglis, T. J., Millar, M. R., Jones, J. G. & Robinson, D. A. Tracheal tube biofilm as a supply of bacterial colonization of the lung. J Clin Microbiol 27, 2014–2018 (1989).11.Torres, A. et al. Re-intubation will increase the chance of nosocomial pneumonia in sufferers needing mechanical air flow. Am J Respir Crit Care Med 152, 137–141 (1995).12.European Centre for Illness Prevention and Management. Annual Epidemiological Report. st=4f55advert51-4aed-4d32-b960-af70113dbb90&ID=1292 (2014).13.Silva-Santana, G., Lenzi-Almeida, Ok. C., Lopes, V. G. S. & guiar-Alves, F. Biofilm formation in catheter-related infections by Panton-Valentine leukocidin-producing Staphylococcus aureus. Int Microbiol. 19, 199–207 (2016).14.Kropec, A. et al. Poly-N-acetylglucosamine manufacturing in Staphylococcus aureus is crucial for virulence in murine fashions of systemic an infection. Infect. Immun. 73, 6868–6876 (2005).15.Pantanella, F., Valenti, P., Natalizi, T., Passeri, D. & Berlutti, F. Analytical methods to review microbial biofilm on abiotic surfaces: execs and cons of the principle methods at the moment in use. Ann. Ig 25, 31–42 (2013).16.Hassan, A. et al. Analysis of various detection strategies of biofilm formation within the scientific isolates. Braz. J Infect. Dis. 15, 305–311 (2011).17.Peeters, E., Nelis, H. J. & Coenye, T. Comparability of a number of strategies for quantification of microbial biofilms grown in microtiter plates. J Microbiol. Strategies 72, 157–165 (2008).18.Olivares, E. et al. The BioFilm Ring Check: a Fast Methodology for Routine Evaluation of Pseudomonas aeruginosa Biofilm Formation Kinetics. J Clin. Microbiol. 54, 657–661 (2016).19.Christensen, G. D. et al. Adherence of coagulase-negative staphylococci to plastic tissue tradition plates: a quantitative mannequin for the adherence of staphylococci to medical gadgets. J Clin. Microbiol. 22, 996–1006 (1985).20.Elkhatib, W. F., Khairalla, A. S. & Ashour, H. M. Analysis of various microtiter plate-based strategies for the quantitative evaluation of Staphylococcus aureus biofilms. Future. Microbiol. 9, 725–735 (2014).21.Knobloch, J. Ok., Horstkotte, M. A., Rohde, H. & Mack, D. Analysis of various detection strategies of biofilm formation in Staphylococcus aureus. Med Microbiol. Immunol. 191, 101–106 (2002).22.Fernandez-Barat, L. et al. Linezolid limits burden of methicillin-resistant Staphylococcus aureus in biofilm of tracheal tubes. Crit Care Med. 40, 2385–2389 (2012).23.Aguilera, X. E. et al. Tracheal tube biofilm elimination by way of a novel closed-suctioning system: an experimental research. Br. J. Anaesth. 115, 775–783 (2015).24.Bui, L. M., Turnidge, J. D. & Kidd, S. P. The induction of Staphylococcus aureus biofilm formation or Small Colony Variants is a strain-specific response to host-generated chemical stresses. Microbes. Infect. 17, 77–82 (2015).25.Martinez-Olondris, P. et al. An experimental mannequin of pneumonia induced by methicillin-resistent Staphylococcus aureus in ventilated piglets. Eur Respir J 36, 901–906 (2010).26. Tobin,M.J. Ideas and follow of mechanical air flow (The McGraw-Hill Firms, Inc., New York, 2013).27.American Thoracic Society & Infectious Ailments Society of America Pointers for the Administration of Adults with Hospital-acquired, Ventilator-associated, and Healthcare-associated Pneumonia. Am J Respir Crit Care Med 171, 388–416 (2005).28.Wang, Y., Leng, V., Patel, V. & Phillips, Ok. S. Injections by way of pores and skin colonized with Staphylococcus aureus biofilm introduce contamination regardless of customary antimicrobial preparation procedures. Sci. Rep. 7, 45070 (2017).29.Bardes, J. M., Grey, D. & Wilson, A. Impact of the endOclear((R)) System on Biofilm in Endotracheal Tubes. Surg. Infect. (Larchmt.) 18, 293–298 (2017).30.Berra, L. et al. A scientific evaluation of the Mucus Shaver: a tool to maintain the endotracheal tube free from secretions. Crit Care Med. 40, 119–124 (2012).31.Pinciroli, R. et al. Endotracheal Tubes Cleaned With a Novel Mechanism for Secretion Elimination: A Randomized Managed Scientific Research. Respir. Care 61, 1431–1439 (2016).32.Lebeaux, D., Chauhan, A., Rendueles, O. & Beloin, C. From in vitro to in vivo Fashions of Bacterial Biofilm-Associated Infections. Pathogens. 2, 288–356 (2013).33.Danin, P. E. et al. Description and microbiology of endotracheal tube biofilm in mechanically ventilated topics. Respir. Care 60, 21–29 (2015).34.Haley, C. L., Colmer-Hamood, J. A. & Hamood, A. N. Characterization of biofilm-like buildings fashioned by Pseudomonas aeruginosa in an artificial mucus medium. BMC. Microbiol. 12, 181 (2012).35.Sriramulu, D. D., Lunsdorf, H., Lam, J. S. & Romling, U. Microcolony formation: a novel biofilm mannequin of Pseudomonas aeruginosa for the cystic fibrosis lung. J Med Microbiol. 54, 667–676 (2005).36.Pabst, B., Pitts, B., Lauchnor, E. & Stewart, P. S. Gel-Entrapped Staphylococcus aureus Micro organism as Fashions of Biofilm An infection Exhibit Progress in Dense Aggregates, Oxygen Limitation, Antibiotic Tolerance, and Heterogeneous Gene Expression. Antimicrob. Brokers Chemother. 60, 6294–6301 (2016).37.Landry, R. M., An, D., Hupp, J. T., Singh, P. Ok. & Parsek, M. R. Mucin-Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance. Mol. Microbiol. 59, 142–151 (2006).38.Worlitzsch, D. et al. Results of diminished mucus oxygen focus in airway Pseudomonas infections of cystic fibrosis sufferers. J. Clin. Make investments 109, 317–325 (2002).39.Gries, D. M., Pultz, N. J. & Donskey, C. J. Progress in cecal mucus facilitates colonization of the mouse intestinal tract by methicillin-resistant Staphylococcus aureus. J Infect. Dis. 192, 1621–1627 (2005).40.Ansorg, R. A., Azem, T., Fabry, W. H. & Rath, P. M. Affect of mucin on the exercise of the antiseptic Lavasept towards Staphylococcus aureus. Chemotherapy 48, 129–133 (2002).41.Scherr, T. D. et al. World transcriptome evaluation of Staphylococcus aureus biofilms in response to innate immune cells. Infect. Immun. 81, 4363–4376 (2013).42.Hsu, C. Y. et al. Vancomycin promotes the bacterial autolysis, launch of extracellular DNA, and biofilm formation in vancomycin-non-susceptible Staphylococcus aureus. FEMS Immunol. Med Microbiol. 63, 236–247 (2011).43.Jaffe, A. & Bush, A. Anti-inflammatory results of macrolides in lung illness. Pediatr. Pulmonol. 31, 464–473 (2001).44.Brady, R. A., Mocca, C. P., Plaut, R. D., Takeda, Ok. & Burns, D. L. Comparability of the immune response throughout acute and continual Staphylococcus aureus an infection. PLoS. One. 13, e0195342 (2018).45.Prabhakara, R. et al. Suppression of the inflammatory immune response prevents the event of continual biofilm an infection attributable to methicillin-resistant Staphylococcus aureus. Infect. Immun. 79, 5010–5018 (2011).46.Rohde, H. et al. Polysaccharide intercellular adhesin or protein elements in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus remoted from prosthetic hip and knee joint infections. Biomaterials 28, 1711–1720 (2007).47.Delaune, A. et al. The WalKR system controls main staphylococcal virulence genes and is concerned in triggering the host inflammatory response. Infect. Immun. 80, 3438–3453 (2012).48.Fux, C. A., Wilson, S. & Stoodley, P. Detachment traits and oxacillin resistance of Staphyloccocus aureus biofilm emboli in an in vitro catheter an infection mannequin. J. Bacteriol. 186, 4486–4491 (2004).49.Hoffman, L. R. et al. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436, 1171–1175 (2005).50.Mesak, L. R., Miao, V. & Davies, J. Results of subinhibitory concentrations of antibiotics on SOS and DNA restore gene expression in Staphylococcus aureus. Antimicrob. Brokers Chemother. 52, 3394–3397 (2008).51.Ferrer, M. D. et al. Impact of antibiotics on biofilm inhibition and induction measured by real-time cell evaluation. J Appl. Microbiol. 122, 640–650 (2017).52.Stepanovic, S., Djukic, N., Djordjevic, V. & Djukic, S. Affect of the incubation ambiance on the manufacturing of biofilm by staphylococci. Clin. Microbiol. Infect. 9, 955–958 (2003).53.Ursic, V., Tomic, V. & Kosnik, M. Impact of various incubation atmospheres on the manufacturing of biofilm in methicillin-resistant Staphylococcus aureus (MRSA) grown in nutrient-limited medium. Curr. Microbiol. 57, 386–390 (2008).54.Gomez-Gonzalez, C. et al. Scientific and molecular traits of infections with CO2-dependent small-colony variants of Staphylococcus aureus. J Clin. Microbiol. 48, 2878–2884 (2010).55.Fernandez-Barat, L. et al. Phenotypic shift in Pseudomonas aeruginosa populations from cystic fibrosis lungs after 2-week antipseudomonal therapy. J Cyst. Fibros. 16, 222–229 (2017).56.Asai, Ok. et al. Impact of incubation ambiance on the manufacturing and composition of staphylococcal biofilms. J Infect. Chemother. 21, 55–61 (2015).57.Cramton, S. E., Ulrich, M., Gotz, F. & Doring, G. Anaerobic situations induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun. 69, 4079–4085 (2001).58.Martinez-Olondris, P. et al. Efficacy of linezolid in comparison with vancomycin in an experimental mannequin of pneumonia induced by methicillin-resistant Staphylococcus aureus in ventilated pigs. Crit Care Med (2011).59.Sierra, J. M., Marco, F., Ruiz, J., Jimenez de Anta, M. T. & Vila, J. Correlation between the exercise of various fluoroquinolones and the presence of mechanisms of quinolone resistance in epidemiologically associated and unrelated strains of methicillin-susceptible and -resistant Staphylococcus aureus. Clin. Microbiol. Infect. eight, 781–790 (2002).60.Gautom, R. Ok. Fast pulsed-field gel electrophoresis protocol for typing of Escherichia coli O157:H7 and different gram-negative organisms in 1 day. J Clin. Microbiol. 35, 2977–2980 (1997).61.Nationwide Analysis Council. Information for the Care and Use of Laboratory Animals: Eight Version. Washington, DC: The Nationwide Academies Press. (2011).


Please enter your comment!
Please enter your name here