Reducing protein oxidation reverses lung fibrosis

1.du Bois, R. M. Methods for treating idiopathic pulmonary fibrosis. Nat. Rev. Drug Discov. 9, 129–140 (2010).2.Barkauskas, C. E. & Noble, P. W. Mobile mechanisms of tissue fibrosis. 7. New insights into the mobile mechanisms of pulmonary fibrosis. Am. J. Physiol. Cell Physiol. 306, C987–996 (2014).three.Raghu, G. et al. An official ATS/ERS/JRS/ALAT assertion: idiopathic pulmonary fibrosis: evidence-based tips for analysis and administration. Am. J. Respir. Crit. Care Med. 183, 788–824 (2011).four.Kinnula, V. L. & Myllarniemi, M. Oxidant–antioxidant imbalance as a possible contributor to the development of human pulmonary fibrosis. Antioxid. Redox Sign. 10, 727–738 (2008).5.Janssen-Heininger, Y. M. et al. Regulation of apoptosis by means of cysteine oxidation: implications for fibrotic lung illness. Ann. NY Acad. Sci. 1203, 23–28 (2010).6.Kurundkar, A. & Thannickal, V. J. Redox mechanisms in age-related lung fibrosis. Redox Biol. 9, 67–76 (2016).7.Mieyal, J. J., Gallogly, M. M., Qanungo, S., Sabens, E. A. & Shelton, M. D. Molecular mechanisms and scientific implications of reversible protein S-glutathionylation. Antioxid. Redox Sign. 10, 1941–1988 (2008).eight.Cantin, A. M., Hubbard, R. C. & Crystal, R. G. Glutathione deficiency within the epithelial lining fluid of the decrease respiratory tract in idiopathic pulmonary fibrosis. Am. Rev. Respir. Dis. 139, 370–372 (1989).9.Beeh, Ok. M. et al. Glutathione deficiency of the decrease respiratory tract in topics with idiopathic pulmonary fibrosis. Eur. Respir. J. 19, 1119–1123 (2002).10.Rahman, I. et al. Systemic and pulmonary oxidative stress in idiopathic pulmonary fibrosis. Free Radic. Biol. Med. 27, 60–68 (1999).11.Meyer, A., Buhl, R. & Magnussen, H. The impact of oral N-acetylcysteine on lung glutathione ranges in idiopathic pulmonary fibrosis. Eur. Respir. J. 7, 431–436 (1994).12.Shahzeidi, S., Sarnstrand, B., Jeffery, P. Ok., McAnulty, R. J. & Laurent, G. J. Oral N-acetylcysteine reduces bleomycin-induced collagen deposition within the lungs of mice. Eur. Respir. J. four, 845–852 (1991).13.Hagiwara, S. I., Ishii, Y. & Kitamura, S. Aerosolized administration of N-acetylcysteine attenuates lung fibrosis induced by bleomycin in mice. Am. J. Respir. Crit. Care Med. 162, 225–231 (2000).14.Demedts, M. et al. Excessive-dose acetylcysteine in idiopathic pulmonary fibrosis. N. Engl. J. Med. 353, 2229–2242 (2005).15.Martinez, F. J., de Andrade, J. A., Anstrom, Ok. J., King, T. E. Jr. & Raghu, G. Randomized trial of acetylcysteine in idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2093–2101 (2014).16.Janssen-Heininger, Y. M. et al. Redox-based regulation of sign transduction: ideas, pitfalls, and guarantees. Free Radic. Biol. Med. 45, 1–17 (2008).17.Aesif, S. W. et al. In situ evaluation of protein S-glutathionylation in lung tissue utilizing glutaredoxin-1-catalyzed cysteine derivatization. Am. J. Pathol. 175, 36–45 (2009).18.Kuwano, Ok. et al. Important roles of the Fas–Fas ligand pathway within the growth of pulmonary fibrosis. J. Clin. Make investments. 104, 13–19 (1999).19.Anathy, V. et al. Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas. J. Cell Biol. 184, 241–252 (2009).20.Hagimoto, N. et al. Induction of apoptosis and pulmonary fibrosis in mice in response to ligation of Fas antigen. Am. J. Respir. Cell Mol. Biol. 17, 272–278 (1997).21.Sisson, T. H. et al. Focused damage of kind II alveolar epithelial cells induces pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 181, 254–263 (2010).22.Liang, J. et al. Hyaluronan and TLR4 promote surfactant-protein-C-positive alveolar progenitor cell renewal and stop extreme pulmonary fibrosis in mice. Nat. Med. 22, 1285–1293 (2016).23.Korfei, M. et al. Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 178, 838–846 (2008).24.Degryse, A. L. et al. TGFβ signaling in lung epithelium regulates bleomycin-induced alveolar damage and fibroblast recruitment. Am. J. Physiol. Lung Cell Mol. Physiol. 300, L887–897 (2011).25.Anathy, V. et al. Glutaredoxin-1 attenuates S-glutathionylation of the dying receptor Fas and reduces decision of Pseudomonas aeruginosa pneumonia. Am. J. Respir. Crit. Care Med. 189, 463–474 (2014).26.Sime, P. J., Xing, Z., Graham, F. L., Csaky, Ok. G. & Gauldie, J. Adenovector-mediated gene switch of lively remodeling development factor-β1 induces extended extreme fibrosis in rat lung. J. Clin. Make investments. 100, 768–776 (1997).27.Hashemy, S. I., Johansson, C., Berndt, C., Lillig, C. H. & Holmgren, A. Oxidation and S-nitrosylation of cysteines in human cytosolic and mitochondrial glutaredoxins: results on construction and exercise. J. Biol. Chem. 282, 14428–14436 (2007).28.Selman, M. & Pardo, A. Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. An integral mannequin. Am. J. Respir. Crit. Care Med. 189, 1161–1172 (2014).29.Mora, A. L., Rojas, M., Pardo, A. & Selman, M. Rising therapies for idiopathic pulmonary fibrosis, a progressive age-related illness. Nat. Rev. Drug Discov. 16, 810 (2017).30.Hecker, L. et al. Reversal of persistent fibrosis in getting old by concentrating on Nox4–Nrf2 redox imbalance. Sci. Transl. Med. 6, 231ra247 (2014).31.Kropski, J. A. & Blackwell, T. S. Endoplasmic reticulum stress within the pathogenesis of fibrotic illness. J. Clin. Make investments. 128, 64–73 (2018).32.Thannickal, V. J. & Horowitz, J. C. Evolving ideas of apoptosis in idiopathic pulmonary fibrosis. Proc. Am. Thorac. Soc. three, 350–356 (2006).33.King, T. E. Jr et al. A part three trial of pirfenidone in topics with idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2083–2092 (2014).34.Richeldi, L. et al. Efficacy and security of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2071–2082 (2014).35.Lillig, C. H., Berndt, C. & Holmgren, A. Glutaredoxin techniques. Biochim. Biophys. Acta 1780, 1304–1317 (2008).36.Wu, R. F., Ma, Z., Liu, Z. & Terada, L. S. Nox4-derived H2O2 mediates endoplasmic reticulum signaling by means of native Ras activation. Mol. Cell. Biol. 30, 3553–3568 (2010).37.Carnesecchi, S. et al. A key function for NOX4 in epithelial cell dying throughout growth of lung fibrosis. Antioxid. Redox Sign. 15, 607–619 (2011).38.Anathy, V. et al. Oxidative processing of latent Fas within the endoplasmic reticulum controls the power of apoptosis. Mol. Cell. Biol. 32, 3464–3478 (2012).39.Bueno, M. et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J. Clin. Make investments. 125, 521–538 (2015).40.Mora, A. L., Bueno, M. & Rojas, M. Mitochondria within the highlight of getting old and idiopathic pulmonary fibrosis. J. Clin. Make investments. 127, 405–414 (2017).41.Perl, A. Ok., Zhang, L. & Whitsett, J. A. Conditional expression of genes within the respiratory epithelium in transgenic mice: cautionary notes and towards constructing a greater mouse entice. Am. J. Respir. Cell Mol. Biol. 40, 1–three (2009).42.Perl, A. Ok. et al. Conditional recombination reveals distinct subsets of epithelial cells in trachea, bronchi, and alveoli. Am. J. Respir. Cell Mol. Biol. 33, 455–462 (2005).43.Salmena, L. et al. Important function for caspase eight in T-cell homeostasis and T-cell-mediated immunity. Genes Dev. 17, 883–895 (2003).44.Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A. & Nagata, S. Lymphoproliferation dysfunction in mice defined by defects in Fas antigen that mediates apoptosis. Nature 356, 314–317 (1992).45.Ho, Y. S. et al. Focused disruption of the glutaredoxin 1 gene doesn’t sensitize grownup mice to tissue damage induced by ischemia/reperfusion and hyperoxia. Free Radic. Biol. Med. 43, 1299–1312 (2007).46.Bauer, Y. et al. A novel genomic signature with translational significance for human idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 52, 217–231 (2015).47.R Core Crew. R: A Language and Atmosphere for Statistical Computing (R Basis for Statistical Computing, Vienna, 2011).48.Woessner, J. F. Jr. The willpower of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch. Biochem. Biophys. 93, 440–447 (1961).49.Fonseca, C., Taatjes, D. J., Callas, P., Ittleman, F. & Bovill, E. G. The consequences of getting old on the intimal area of the human saphenous vein: insights from multimodal microscopy and quantitative picture evaluation. Histochem. Cell Biol. 138, 435–445 (2012).50.Reynaert, N. L., Wouters, E. F. & Janssen-Heininger, Y. M. Modulation of glutaredoxin-1 expression in a mouse mannequin of allergic airway illness. Am. J. Respir. Cell Mol. Biol. 36, 147–151 (2007).51.Coppo, L., Montano, S. J., Padilla, A. C. & Holmgren, A. Dedication of glutaredoxin enzyme exercise and protein S-glutathionylation utilizing fluorescent eosin-glutathione. Anal. Biochem. 499, 24–33 (2016).52.Micsonai, A. et al. Correct secondary construction prediction and fold recognition for round dichroism spectroscopy. Proc. Natl Acad. Sci. USA 112, E3095–3103 (2015).53.Rahman, I., Kode, A. & Biswas, S. Ok. Assay for quantitative willpower of glutathione and glutathione disulfide ranges utilizing enzymatic recycling methodology. Nat. Protoc. 1, 3159–3165 (2006).54.Jones, P. W., Quirk, F. H., Baveystock, C. M. & Littlejohns, P. A self-complete measure of well being standing for continual airflow limitation. The St. George’s Respiratory Questionnaire. Am. Rev. Respir. Dis. 145, 1321–1327 (1992).

LEAVE A REPLY

Please enter your comment!
Please enter your name here